quarta-feira, 14 de janeiro de 2009

Centro do Sistema Solar

Sol



O Sol (do latim Sol) é a estrela central do nosso sistema planetário solar. Atualmente, sabe-se que em torno dele gravitam pelo menos oito planetas, quatro planetas anões, 1.600 asteróides, 138 satélites e um grande número de cometas. Sua massa é 333.000 vezes a da Terra e o seu volume 1.400.000 vezes. A distância do nosso planeta ao Sol é de cerca de 150 milhões de quilômetros ou 1 unidade astronômica (UA). A luz solar demora 8 minutos e 18 segundos para chegar à Terra.


Estrutura solar
O Sol, tal como as restantes estrelas, é uma esfera de plasma que se encontra em equilíbrio hidrostático entre as duas forças principais que agem dentro dele: para fora a pressão termodinâmica, produto das altas temperaturas internas, e para dentro a força gravitacional. A estrutura solar pode ser dividida em duas grandes regiões: o Interior e a Atmosfera, entre elas se encontra uma fina camada, que pode ser considerada a superfície, chamada Fotosfera.

Interior solar
O interior solar possui três regiões bem diferentes: o núcleo, que é onde se produzem as reações nucleares que transformam a massa em energia através da fusão nuclear. Acima desta achamos a região radioativa e por último a região convectiva. Nenhuma destas regiões pode ser observada de forma direta já que a radiação é completamente absorvida (e reemitida) e o conhecimento que temos delas é através de modelos teóricos ou observações indiretas, principalmente por meio da heliosismologia.

Superfície e atmosfera solar

Foto da sonda espacial Hinode, tirada em 12 de janeiro de 2007, da superfície da estrela.
Por cima da região convectiva encontramos a fotosfera. A luz irradiada pela fotosfera não é completamente atenuada pelas camadas superiores e portanto se converte na região mais funda que podemos observar do Sol. Na fotosfera, a emissão acontece em todas as bandas do espectro luminoso produzindo a luz branca característica do Sol ao olho nu. A região encontra-se a uma temperatura média de 5.775 K (ou 5.502 oC) e tem uma densidade de 1014 a 1015 partículas por cm³.
As camadas superiores à fotosfera são chamadas de atmosfera solar. A primeira, logo acima da fotosfera, é a cromosfera, cuja temperatura varia dos 6.000 K até os 30.000 K, com uma espessura de uns 2.300 km, embora existe muita controvérsia a respeito.
A camada mais externa chama-se coroa, e sua temperatura vai de 1 milhão até vários milhões de graus kelvin. Em contrapartida a densidade da coroa é muito baixa, sendo de 1010 cm-3 em sua base e diminuindo em direção oposta ao centro do Sol. A coroa não possui limite superior, pode-se dizer que ela se estende pelo Sistema Solar inteiro. Entre a cromosfera e a coroa há uma estreita faixa chamada região de transição. Um dos grandes problemas da física solar é explicar que mecanismo consegue aumentar a temperatura da atmosfera solar dos perto de 5.500 K da fotosfera para o milhão de graus da Coroa.

Ciclo solar
O ciclo solar tem muitos efeitos importantes, que influenciam nosso planeta. Estudos de heliosismologia executados a partir de sondas espaciais permitiram observar certas "vibrações solares", cuja freqüência cresce com o aumento da atividade solar, acompanhando o ciclo de 11 anos de erupções, a cada 22 anos existe a manifestação do chamado hemisfério dominador, além da movimentação das estruturas magnéticas em direção aos pólos, que resulta em dois ciclos de 18 anos com incremento da atividade geomagnética da Terra e da oscilação da temperatura do plasma ionosférico na estratosfera de nosso planeta.

Ionosfera
A ionosfera se localiza entre 60 e 400 km de altitude, é composta de íons, plasma ionosférico, e, devido à sua composição, reflete ondas de rádio até aproximadamente 30 MHz.

Fotosfera
A fotosfera do Sol tem a aparência da superfície líquida cheia de bolhas, em ebulição; isso é chamado de granulação fotosférica. Os grânulos tem em torno de 500km de diâmetro e duram cerca de 10 minutos cada.
Plutão



Plutão (oficialmente, 1340340 Plutão) é um planeta anão e um plutóide do sistema solar, localizado numa região conhecida como cinturão de Kuiper. Sua órbita, excêntrica, é fortemente inclinada em relação aos planetas. Dos 248 anos que demora a para fazer a translação em volta do Sol, Plutão passa 20 anos mais perto do sol do que Netuno; no restante da órbita, permanece além de Netuno.
Possui um satélite maior chamado Caronte e dois menores, descobertos em 2005 pelo telescópio espacial Hubble e que receberam da União Astronómica Internacional (UAI) os nomes mitológicos de Nix e Hidra. Um dos motivos da escolha desses nomes foram as iniciais N e H que coincidem com a Sonda espacial New Horizons, que em 2015 visitará o sistema Plutão - Caronte e também esses novos satélites.
Até 2006, Plutão era contado como um planeta principal; mas a descoberta de vários corpos celestes de tamanho comparável e até mesmo a de um outro objeto maior no Cinturão de Kuiper fez com que a UAI, em 24 de agosto, durante uma conferência da organização, decidisse considerá-lo como um "planeta-anão", juntamente com Éris e Ceres (este último localizado no cinturão de asteróides entre Marte e Júpiter). Plutão é visto agora como o primeiro de uma categoria de objetos trans-netunianos cuja denominação, "plutóides", foi aprovada pela UAI em 11 de junho de 2008.
Em setembro de 2006, a UAI atribuiu a Plutão o número 1340340 no catálogo de planetas menores, de modo a refletir a sua nova condição de planeta anão.



História
O astrônomo norte-americano Percival Lowell foi um de seus investigadores mais dedicados, mas nada descobriu. Doze anos depois de sua morte, seu antigo observatório, o Flagstaff, no Arizona, contratou um astrônomo mais jovem para continuar o trabalho. Plutão foi descoberto em Fevereiro de 1930 pelo jovem Clyde Tombaugh, que na época tinha 24 anos e conseguiu fotografá-lo.

Nomeação
O direito de dar o nome ao novo objeto coube ao Observatório Lowell e a seu diretor, Vesto Melvin Slipher. Tombaugh aconselhou Slipher a sugerir um nome rapidamente para o novo objeto antes que outra pessoa o fizesse. Constance Lowell, viúva de Percival Lowell, propôs Zeus, então Lowell, e finalmente seu próprio nome, sem grande receptividade. Naquela altura, nomes mitológicos, tais como Cronos e Minerva, eram fortes candidatos.
Venetia Phair, na época uma menina de onze anos de Oxford, Inglaterra, foi a primeira a sugerir o nome Plutão. Venetia, que se interessava por mitologia clássica assim como astronomia, sugeriu o nome romano equivalente ao Hades grego, em conversa com seu avô Falconer Madan, um ex-bibliotecário da Biblioteca Bodleiana da Universidade de Oxford. Madan transmitiu a sugestão ao Professor Herbert Hall Turner, que a telegrafou ao Observatório Lowell. Acatado de maneira quase unânime, o nome Plutão foi oficialmente adotado em 1º de maio de 1930. O nome, que começa com PL, também procurou invocar Percival Lowell.

Características físicas
As características físicas de Plutão são, em grande parte, desconhecidas, pois o planeta anão ainda não recebeu a visita de uma nave espacial e a distância da Terra dificulta investigações mais detalhadas.

Órbita

Órbita de Plutão - perspectiva da eclíptica. Esta "vista lateral" da órbita de Plutão (em vermelho) mostra a sua forte inclinação orbital, em comparação com a órbita mais normal de Netuno (em azul).

Órbita de Plutão - perspectiva polar. Esta "vista de cima" mostra como a órbita de Plutão (em vermelho) é menos circular do que a de Netuno (em azul). Também demonstra como Plutão por vezes se aproxima mais do sol do que Netuno. As metades escuras de ambas as órbitas correspondem a posições abaixo da eclíptica.
A órbita de Plutão é altamente incomum, comparada com a dos planetas do sistema solar. A translação destes em torno do sol ocorre próxima a um plano imaginário chamado "eclíptica", com órbitas quase circulares. A órbita de Plutão, por outro lado, é fortemente inclinada acima da eclíptica (até 17º) e excêntrica. Devido à inclinação da órbita, o periélio de Plutão localiza-se bem acima da eclíptica (~8.0 UA) . Esta alta excentricidade faz com que parte da órbita daquele planeta anão seja mais próxima do sol do que a de Neptuno.

Aparência
A magnitude aparente de Plutão é mais tênue do que 14 m, razão pela qual é necessário um telescópio para observá-lo, de preferência com 30 cm de abertura. Com um diâmetro angular de apenas 0,15”, aparenta ser um objeto estelar mesmo com o uso de grandes telescópios. O planeta anão apresenta uma cor marrom clara com um tom leve de amarelo.

Massa e dimensões

Comparação entre os pares Terra-Lua e Plutão-Caronte (abaixo, à direita).
Mesmo muitas décadas após sua descoberta, a massa e o diâmetro de Plutão continuaram a ser apenas estimadas. Inicialmente, pensava-se que era muito grande, comparável ao tamanho da Terra, mas, com o tempo e observações posteriores, as estimativas foram dramaticamente revisadas para baixo.
A descoberta do seu satélite Caronte, em 1978, permitiu a determinação da massa do sistema Plutão-Caronte por meio da simples aplicação da formulação newtoniana da terceira lei de Kepler. O diâmetro de Plutão foi finalmente medido quando o planeta anão foi ocultado por Caronte, e o seu disco agora pode ser resolvido por telescópios com o emprego de ótica adaptativa.
A massa de Plutão equivale a menos de 0,2 a da Lua, o que torna aquele astro não apenas muito menor do que qualquer planeta mas também com massa e dimensões menores do que sete satélites: Ganimedes, Titã, Calisto, Io, a Lua, Europa e Tritão. Por outro lado, Plutão tem o dobro do diâmetro (e doze vezes a massa) de Ceres, no cinturão de asteróides, e era o maior objeto conhecido no cinturão de Kuiper até a descoberta de Éris em 2005.

Atmosfera
A tênue atmosfera de Plutão compõe-se provavelmente de nitrogênio, metano e monóxido de carbono, em equilíbrio com nitrogênio sólido e gelos de monóxido de carbono na superfície. À medida que o planeta anão se afasta de seu periélio (e do sol), sua atmosfera tende a congelar e a precipitar.

Luas

Caronte
Caronte é o maior dos três satélites de Plutão e foi descoberto por James Walter Christy em 22 de Junho de 1978. A sua composição e dimensões são ainda muito incertas, devido à distância a que o par Plutão-Caronte se encontra da Terra. Mas as medições feitas mostram que Caronte possui um diâmetro de aproximadamente 1.207 km.
Como se viu nas últimas décadas, todos os planetas distantes tinham mais satélites do que se pensava antes dos vôos espaciais, e nunca foi visitado pelo homem. Entretanto, será visitada pela missão espacial não-tripulada New Horizons em julho de 2015, para novas pesquisas.
De acordo com as novas regras Caronte, o qual era considerado um satélite de Plutão, perde a condição de satélite e passa também a ser um "planeta", um plutono e um planeta anão. Com isso, nós passamos a ter um sistema de planeta duplo orbitando ao redor do Sol.

Hidra
Foi descoberta juntamente com Nix em junho de 2005, pela Equipe de Busca de Plutão do telescópio espacial Hubble, composta por Hal A. Weaver, S. Alan Stern, Max J. Mutchler, Andrew J. Steffl, Marc W. Buie, William J. Merline, John R. Spencer, Eliot F. Young e Leslie A. Young. As imagens da descoberta foram tiradas em 15 de maio e 18 de maio de 2005; as luas foram avistadas pela primeira vez por Max J. Mutchler em 15 de junho de 2005 e as descobertas foram anunciadas em 31 de outubro de 2005, depois de confirmações obtidas por outras observações. A lua foi designada S/2005 P 1. O satélite orbita o baricentro do sistema no mesmo plano que Caronte e Nix, a uma distância de cerca de 65.000 km. Diferente de outras satélites de Plutão, sua órbita é apenas aproximadamente circular; sua excentricidade de 0,0052 é pequena, mas significantemente diferente de zero. Seu período orbital de 38,2 dias. Embora seu tamanho não tenha sido medido diretamente, estima-se que a lua tenha um diâmetro entre 40 km. Na época da descoberta, Hidra estava cerca de 25% mais brilhante do que sua lua irmã Nix, o que levou à suposição de que seu diâmetro era cerca de 10% maior. Porém, observações posteriores indicaram que as duas luas eram aproximadamente iguais em brilho. Hidra parece ser espectralmente neutra, como Caronte e provavelmente Nix, mas diferente de Plutão, que é avermelhado. Hidra será visitada juntamente com Plutão pela missão New Horizons,Hidra foi anunciado em 21 de junho de 2006, na Circular 8723 da UAI, junto com a designação formal Plutão III. Ela foi nomeada em homenagem à Hidra, o monstro que guardava as águas do mundo inferior de Plutão, na mitologia greco-romana.

Nix
Foi descoberto junto com Hidra em junho de 2005, a lua segue uma órbita circular no mesmo plano que Caronte. Seu período orbital é de 24,9 dias. Embora seu tamanho não tenha sido medido diretamente, estima-se que a lua tenha um diâmetro entre 40 km. Nix tem em média o mesmo brilho de Hidra, sugerindo que as duas luas sejam aproximadamente do mesmo tamanho. Pesquisas preliminares pareciam apontar que Nix era avermelhada como Plutão e diferente das outras luas, mas dados mais recentes mostram que ela é cinza como os outros satélites. Nix será visitada juntamente com Plutão pela missão New Horizons, em 2015. Nix é o nome da antiga deusa grega da noite, a quem os próprios deuses do Olimpo temiam e respeitavam. Era também a mãe de Éris.

Curiosidades
Se os humanos vivessem no tempo de Plutão, jamais chegariam ao primeiro aniversário. O Planeta completa sua órbita ao redor do Sol uma vez a cada 248 anos terrestres.
A força da gravidade em Plutão é tão fraca que um homem de 70 kgf na terra pesaria apenas 4 kgf em Plutão.
Em Plutão, não é possível respirar. Além do frio insuportável, Plutão tem uma atmosfera muito fina de moléculas de nitrogênio, com vestígios de Monóxido de Carbono e metano. Quando o planeta se distancia do Sol, a atmosfera congela junto a superfície novamente.
Plutão é um dos únicos planetas que giram sobre seu eixo horizontal. Urano é o outro. Um dia em Plutão equivale a 6,4 dias terrestres.
Um sinal de rádio transmitido na velocidade da Luz leva cerca de quatro horas e meia para ir da Terra a Plutão.
A órbita de Plutão em torno do Sol está em ressonância 3:2 com a órbita de Netuno. Isso garante que, mesmo com a projeção das órbitas na eclíptica se cruzando, os dois astros nunca se aproximam.

quinta-feira, 8 de janeiro de 2009

Neptuno





Neptuno é o oitavo planeta do Sistema Solar, desde a reclassificação de Plutão para a categoria de planeta-anão, e o último, em ordem de afastamento a partir do Sol. Neptuno recebeu o nome do deus romano dos mares. É o quarto maior planeta em diâmetro, e o terceiro maior em massa. Neptuno tem 17 vezes a massa da Terra e é ligeiramente mais maciço do que Úrano, que tem cerca de 15 massas da Terra e é menos denso.
Descoberto em 23 de Setembro de 1846, Neptuno foi o primeiro planeta encontrado por uma previsão matemática, em vez de uma observação regular. Inesperadas mudanças na órbita de Úrano levaram os astrónomos a deduzir que a causa da perturbação gravitacional era uma planeta desconhecido. A lua Tritão foi encontrado pouco depois, mas nenhuma das outras 12 luas do planeta foram descobertas antes do século XX. Neptuno foi visitado por uma única nave espacial, Voyager 2, que voou perto planeta em 25 de Agosto de 1989.
A composição de Neptuno é semelhante à composição de Úrano, e ambos têm composições diferentes das dos maiores gigantes de gás Júpiter e Saturno. Como tal, os astrónomos por vezes colocam-nos numa categoria separada, os "gigantes de gelo". A atmosfera de Neptuno , ao mesmo tempo semelhante à Júpiter e de Saturno, por ser composta basicamente de hidrogênio e hélio, contém uma percentagem mais elevada de "gelos", tais como água, amónia e metano, juntamente com os habituais vestígios de hidrocarbonetos e, possivelmente, nitrogênio. Em contraste, o interior de Neptuno é composto principalmente de gelo e rochas, como o de Úrano. Existem traços de metano nas regiões ultraperiféricas que cotribuem, em parte, para a aparência azul do planeta .
Neptuno tem os ventos mais fortes de qualquer planeta no sistema solar, que podem chegar a atingir os 2100 quilómetros por hora. Na altura do voo da Voyager 2 , o seu hemisfério sul possuía um Grande Ponto Negro, comparável à Grande Mancha Vermelha de Júpiter. A temperatura na alta atmosfera é geralmente perto de -218 °C (55,1 K), um dos mais frio no sistema solar, devido à sua grande distância do sol. A temperatura no centro da Neptuno é de cerca de 7000 °C (7270 K), o que é comparável à superfície do Sol e semelhante à maioria dos outros planetas conhecidos. Neptuno tem um pequeno e fragmentado sistema de anéis, que pôde ser detectado durante a década de 1960, mas só foi confirmado pela Voyager 2 indiscutivelmente .


Características físicas
Orbitando tão longe do Sol, Neptuno recebe muito pouco calor. A sua temperatura superficial média é de -218 °C. No entanto, o planeta parece ter uma fonte interna de calor. Pensa-se que isto se deve ao calor restante, gerado pela matéria em queda durante o nascimento do planeta, que agora irradia pelo espaço fora. A atmosfera de Neptuno tem as mais altas velocidades de ventos no sistema solar, que são acima de 2000 km/h; acredita-se que os ventos são amplificados por este fluxo interno de calor.
Urano





Urano é o sétimo planeta do Sistema Solar, situado entre Saturno e Neptuno. A característica mais notável de Urano é a estranha inclinação do seu eixo de rotação, quase noventa graus em relação com o plano de sua órbita; essa inclinação não é somente do planeta, mas também de seus anéis, satélites e campo magnético. Urano tem a superfície a mais uniforme de todos os planetas por sua característica cor azul-esverdeada, produzida pela combinação de gases em sua atmosfera, e tem anéis que não podem ser vistos a olho nu; além disso, tem um anel azul, que é uma peculiaridade planetária. Urano é um de poucos planetas que têm um movimento de rotação retrógrado, similar ao de Vénus.
Tem 27 satélites ao seu redor e um fino anel de poeira.
O seu diâmetro equatorial é de cerca de 51.118 km, isto é, quatro vezes superior ao da Terra. Urano situa-se a (o semi-eixo maior de sua órbita mede) cerca de 2.870.000.000 de km do Sol, equivalente a 19,18 vezes a distância da Terra ao Sol.
A inclinação axial próxima a 90º de Urano fá-lo girar praticamente "deitado"; por isso suas regiões equatoriais ficam muito fracamente expostas à luz e à energia solar a maior parte do tempo, especialmente por ocasião dos solstícios de Urano. O que ainda permanece incógnito e sem resposta clara é o fato de a temperatura destas regiões não serem menores do que as temperaturas registradas nos pólos; estes, em função da inclinação axial, ficam alternadamente expostos o tempo inteiro à radiação solar. É provável que haja algum tipo de geração de calor e que a dinâmica atmosférica deste planeta promova, de alguma forma, o aquecimento das regiões equatoriais, mas até o momento não há consenso entre os cientistas sobre como isto se dá.

Descobrimento
Urano foi o primeiro planeta descoberto que não era conhecido na antiguidade, embora tenha sido observado e confundido com uma estrela em muitas ocasiões. O registro mais antigo dele se deve a John Flamsteed, que o catalogou como a estrela 34 Tauri em 1690, assim como ocorreu a Galileu, que entre 1612 e 1613 observou Urano em algumas ocasiões pelo telescópio, mas o registrou como diferentes estrelas. Numa das ocasiões, Galileu chegou a se surpreender com o fato de ter "anotado incorretamente" a posição daquela "estrela" no dia anterior, e limitou-se a "corrigir" a posição, sem cogitar a possibilidade de tratar-se de um movimento angular real do objeto e perdendo a oportunidade de adicionar mais este mérito à sua extensa lista de contribuições à Ciência.
Sir William Herschel, um músico alemão da corte do rei Jorge III da Inglaterra, descobriu o planeta Urano em 13 de março de 1781, usando um telescópio construído por ele mesmo, embora a princípio relatasse que se tratava de um cometa. Inicialmente deu-o ao nome do Georgium Sidus (estrela de Jorge) na honra ao rei que acabava de perder as colônias britânicas na América, mas tinha ganho uma estrela. No entanto, o nome não demorou para mudar para Grã-Bretanha, e Joseph Lalande, um astrônomo francês, propôs a chamá-lo Herschel em honra de seu descobridor. Finalmente, o astrônomo alemão Johann Elert Bode propôs o nome de Urano em honra ao deus grego, pai de Cronos – cujo equivalente Romano era chamado de Saturno. Em 1827, o nome Urano era mais usado para o planeta que Grã-Bretanha. O HM Nautical Almanac continuou listando como Georgium Sidus até o ano de 1850.



Anéis
Urano, seus anéis e luas. Imagem capturada pelo telescópio espacial Hubble.
Em 1977, foram descobertos os primeiros nove anéis de Urano. Durante os encontros da Voyager, estes anéis foram fotografados e medidos, tal como outros dois anéis. Os anéis de Urano são muito diferentes dos de Júpiter e Saturno. O anel épsilon exterior é composto principalmente por blocos de gelo com vários metros de diâmetro. Uma distribuição muito ténue de poeira fina também parece estar dispersa pelo sistema de anéis. Pode existir um grande número de anéis estreitos, ou possivelmente anéis incompletos ou arcos de anéis, tão pequenos quanto 50 metros (160 pés) de largura. Descobriu-se que as partículas individuais dos anéis são de baixa reflectividade. Descobriu-se que pelo menos um anel, o épsilon, tem a cor cinzenta. As luas Cordelia e Ofélia agem como satélites pastores (satélites que pela atuação de sua força gravitacional, controlam o tamanho do anel) para o anel épsilon.

terça-feira, 6 de janeiro de 2009

Saturno




Saturno é o sexto planeta do Sistema Solar com uma órbita localizada entre as órbitas de Júpiter e Urano. É o segundo maior planeta após Júpiter, sendo um dos planetas gigantes do Sistema Solar, porém o de menor densidade, tanto que se existisse um oceano grande o bastante, Saturno flutuaria nele. Seu aspecto mais característico é seu brilhante sistema de anéis, o único visível da Terra. Seu nome provém do deus romano Saturno. Faz parte dos denominados planetas exteriores.
Saturno é um planeta gasoso, principalmente composto de hidrogênio (97%), com uma pequena proporção de hélio e outros elementos. Seu interior consiste de um pequeno núcleo rochoso e gelo, cercado por uma espessa camada de hidrogênio metálico e uma camada externa de gases. A atmosfera externa tem uma aparência suave, embora a velocidade do vento em Saturno possa chegar a 1.800 km/h, significativamente tão rápido como os de Júpiter, mas não tão rápidos como os de Netuno. Saturno tem um campo magnético planetário intermediário entre as forças da Terra e o poderoso campo ao redor de Júpiter.
Antes da invenção do telescópio, Saturno era o mais distante dos planetas conhecidos. A olho nu não parecia ser luminoso. O primeiro ao observar seus anéis foi Galileu em 1610, porém devido a baixa inclinação de seus anéis e a baixa resolução de seu telescópio lhe fizeram pensar a princípio que se tratava de grandes luas. Christiaan Huygens com melhores meios de observação pode em 1659 visualizar com clareza os anéis. James Clerk Maxwell em 1859 demonstrou matematicamente que os anéis não poderiam ser um único objeto sólido, sendo que deveriam ser um agrupamento de milhões de partículas de menor tamanho.
O movimento de rotação em volta do seu eixo demora cerca de 10,5 horas, e cada revolução ao redor do Sol leva 30 anos terrestres.
Tem um número elevado de satélites, 60 descobertos até então, dos quais 35 possuem nomes, e está cercado por um complexo de anéis concêntricos, composto por dezenas de anéis individuais separados por intervalos, estando o mais exterior destes situado a 138 000 km do centro do planeta geralmente compostos por restos de meteoros e cristais de gelo. Alguns deles têm o tamanho de uma casa.
Saturno é um esferóide oblato (achatado nos pólos) - seus diâmetros polar e equatorial variam por quase 10% (120.536 km contra 108.728 km). Este é o resultado de sua rápida rotação. Na linha do equador é notável uma pequena saliência, devido a velocidade de rotação. Os outros planetas gasosos também são oblatos, mas em um menor grau. Saturno é o único do sistema solar que é menos denso que a água, com uma densidade específica de 0.69. Esta é uma média; a atmosfera superior de Saturno é menos densa e seu núcleo consideravelmente mais denso que a água.


Origem do nome
Devido a sua posição orbital mais distante que Júpiter os antigos romanos o outorgaram o nome do pai do deus Júpiter ao planeta Saturno. Na mitologia romana, Saturno era equivalente do antigo titã grego Cronos, deus do tempo. Cronos era filho de Urano e Gaia e governava o mundo dos deuses e dos homens devorando seus filhos ao nascerem por que uma profecia dizia que seus filhos o destronariam. Zeus, conseguiu se esquivar deste destino e derrotou seu pai convertendo-se no deus supremo.
Os gregos e romanos, herdaram dos sumérios seus conhecimentos do céu, haviam estabelecido em sete o número de astros que se moviam no firmamento: o Sol, a Lua, e os planetas Mercúrio, Vénus, Marte, Júpiter e Saturno, as estrelas errantes que orbitavam em torno da Terra, centro do Universo. Dos cinco planetas, Saturno era o de movimento mais lento, levando cerca de trinta anos (29,457 anos) para completar sua órbita, quase o triplo que Júpiter (11,862 anos). Em relação a Mercúrio, Vénus e Marte a diferença é muito maior. Saturno se destacava por sua lentidão. Se Júpiter era Zeus, Saturno teria que ser Cronos, seu pai ancião, que passo a passo perambulava entre as estrelas.
Por outro lado, se conheciam sete metais: ouro, prata, mercúrio, estanho, ferro, cobre e chumbo. Se o elemento mercúrio, fluido e móvel, era o metal de Hermes, o mensageiro dos deuses, porque não fazer do chumbo o metal de Saturno, lento e pesado?

Características
Comparação visual entre o tamanho da Terra e Saturno.
Saturno é um planeta visivelmente achatado em seus pólos formando a figura de um esfera oval. Os diâmetros equatorial e polar são respectivamente 120.536 e 108.728 km. Este efeito é produzido pela rápida rotação do planeta, sua natureza liquida e sua relativamente baixa gravidade. Os outros planetas gigantes são também ovalados, porém não em tamanha proporção. Saturno possui uma densidade específica de 690 kg/m³ sendo o único planeta do Sistema Solar com uma densidade inferior a da água (1000 kg/m³). Se existisse um oceano grande o bastante, Saturno flutuaria nele. O planeta é formado por 90% de hidrogênio e 5% de hélio. O volume do planeta é suficiente para conter 740 vezes a Terra, porém sua massa é apenas 95 vezes a terrestre, devido a sua mencionada densidade média relativa.
O período de rotação de Saturno é incerto, uma vez que não possui superfície e sua atmosfera gira com um período distinto em cada latitude. Desde a época da Voyager se considerava que o período de rotação de Saturno, baseando-se na periodicidade de sinais de rádio emitidas por ele, era de 10 h 39 min 22,4 s (810,8°/dia). As missões espaciais Ulysses e Cassini tem mostrado que este período de emissão em rádio varia no tempo, sendo atualmente: 10 h 45 m 45 s (± 36 s). As causas desta mudanças no período de rotação não são conhecidas e se considera que ambos períodos são uma aproximação do período de rotação do seu interior.
Anéis de Saturno
Vista panorámica dos aneís obtida pela Sonda Cassini-Huygens; percebem-se claramente os diferentes anéis e suas divisões.
Os anéis de Saturno são constituídos essencialmente por uma mistura de gelo, poeiras e material rochoso. Embora possam atingir algumas centenas de milhares de quilómetros de diâmetro, não ultrapassam 1,5 km de espessura. A origem dos anéis é desconhecida. Originalmente pensou-se que teriam tido origem na formação dos planetas há cerca de 4 bilhões de anos, mas estudos recentes apontam para que sejam mais novos, tendo apenas algumas centenas de milhões de anos. Os anéis podem mudar de cor.
Júpiter





Júpiter é o maior planeta do sistema solar, e o quinto a partir do Sol. É conhecido pela Grande Mancha Vermelha e pelos seus quatro grandes satélites: Ganímedes, Europa, Io e Calisto. Júpiter é um dos planetas do sistema solar que têm anéis.


Panorâmica
Júpiter tem 2,5 vezes mais massa do que todos os outros planetas tomados em conjunto, de tal forma que o seu baricentro com o Sol se localiza acima da superfície solar (a 1,068 raios solares do centro do Sol). Tem 318 vezes mais massa do que a Terra, um diâmetro 11 vezes superior ao terrestre e um volume 1300 vezes maior que o da Terra. Foi apelidado por muitos de "estrela falhada". Mesmo assim, e por mais impressionante que Júpiter seja, já se descobriram vários planetas extra-solares com massas muito maiores. Por outro lado, pensa-se que Júpiter tenha um diâmetro tão grande como é possível a um planeta com a sua composição, visto que adicionar-lhe mais massa teria apenas como resultado aumentar a compressão gravitacional. Não existe uma definição inequívoca do que distingue um planeta grande e maciço, como Júpiter, de uma anã castanha, mas para que fosse uma estrela Júpiter teria de ter cerca de setenta vezes mais massa do que a que tem.
Júpiter tem também a rotação mais rápida de todos os planetas do sistema solar, o que resulta num achatamento facilmente visível através de um telescópio. A sua característica mais conhecida é provavelmente a Grande Mancha Vermelha, uma tempestade com ventos de até 500 km/h. É quase duas vezes maior que a Terra, e está ativa há cerca de 300 anos. O planeta está perpetuamente coberto por camadas de nuvens. Novas fotos tiradas pelo telescópio Hubble mostram uma nova mancha vermelha surgindo próxima à Grande Mancha Vermelha.
Júpiter costuma ser o quarto corpo mais brilhante no céu (depois do Sol, da Lua e de Vênus; por vezes, Marte aparece mais brilhante do que Júpiter, enquanto outras vezes Júpiter brilha mais do que Vênus). O planeta é conhecido desde os tempos antigos. A descoberta de Galileu Galilei em 1610 de quatro grandes satélites naturais gravitando ao redor de Júpiter, hoje chamados satélites galileanos (Io, Europa, Ganímedes e Calisto) foi a primeira descoberta de movimentos de corpos no espaço aparentemente não tendo a Terra como centro. Este foi o maior ponto a favor da teoria heliocentrista do movimento dos planetas, de Nicolau Copérnico; os discursos de Galileu em favor das teorias de Copérnico fizeram com que fosse julgado pela Inquisição.


Composição do planeta
Júpiter é composto de um centro rochoso relativamente pequeno, imerso em hidrogênio metálico, o qual é circundado por uma camada de hidrogênio líquido, recoberta por sua vez de gás hidrogênio. Não há uma fronteira clara entre essas camadas de diferentes densidades de hidrogênio; as condições variam lentamente do gás até a camada sólida à medida que se aprofunda.


Anéis planetários
Júpiter tem um sistema de anéis planetários composto por partículas de poeira cósmica, embora não tão evidente como Saturno.

quarta-feira, 24 de dezembro de 2008

Marte





Marte é o quarto planeta a contar do Sol e é o último dos quatro planetas telúricos no sistema solar, situando-se entre a Terra e a cintura de asteróides a 1,5 UA do Sol (ou seja, a uma vez e meia a distância da Terra ao Sol). De noite, aparece como uma estrela vermelha, razão por que os antigos romanos lhe deram o nome de Marte, o deus da guerra. Os chineses, coreanos e japoneses chamam-lhe "Estrela de Fogo", baseando-se nos cinco elementos da filosofia tradicional oriental. Executa uma volta em torno do Sol em 687 dias terrestres (quase dois anos).
Marte é um planeta com algumas afinidades com a Terra: tem um dia com uma duração muito próxima do dia terrestre e o mesmo número de estações.
Marte tem calotas polares que contêm água e dióxido de carbono gelados, a maior montanha do sistema solar - o Olympus Mons, um desfiladeiro imenso, planícies, antigos leitos de rios secos, tendo sido recentemente descoberto um lago gelado. Os primeiros observadores modernos interpretaram aspectos da morfologia superficial de Marte de forma ilusória, que contribuíram para conferir ao planeta um estatuto quase mítico: primeiro foram os canais; depois as pirâmides, o rosto humano esculpido, e a região de Hellas no sul de Marte que parecia que, sazonalmente, se enchia de vegetação, o que levou a imaginar a existência de marcianos com uma civilização desenvolvida. Hoje sabemos que poderá ter existido água abundante em Marte e que formas de vida primitiva podem, de facto, ter surgido.


Mitologia
Ver artigo principal: Marte (mitologia)
Marte é um planeta conhecido desde a antiguidade e na mitologia helénica representa Ares, o deus da fúria e da guerra, devido à sua coloração avermelhada. O povo romano que herdou muito da sua cultura da Grécia chamou-lhe de Marte, nome por que hoje conhecemos, quer o deus, quer o planeta.
Outras civilizações observavam também Marte no céu nocturno: os egípcios conheciam-no como "Her Deschel" ou "O Vermelho". Já para os babilónios, Marte era "Nergal" ou "A Estrela da Morte".


História de observação e exploração

Comparação do tamanho dos planetas (da esquerda para a direita): Mercúrio, Vênus, Terra e Marte.
Marte é conhecido desde a antiguidade, e destaca-se no céu pelo seu aspecto avermelhado; devido a isso é conhecido como o "O Planeta Vermelho". Os babilónios já faziam observações cuidadosas do que eles chamavam de Nergal (A Estrela da Morte), mas tudo o que viam tinham propósitos exclusivamente religiosos. Os gregos são os primeiros a fazer observações mais racionais e identificaram Marte como sendo uma das cinco estrelas errantes (planetas) do céu. O astrónomo grego Hiparco (160 - 125 a.C.) verificou que Marte nem sempre se movia de oeste para leste. Ocasionalmente, o planeta invertia o seu caminho no céu para a direcção contrária; para depois voltar a deslocar-se normalmente; esta característica tornava a procura do planeta muito difícil e era contrária à teoria vigente de que a Terra era o centro do universo.
As observações do movimento aparente de Marte feitas por Tycho Brahe (1546 - 1601) permitiram a seu discípulo Johannes Kepler descobrir as leis dos movimentos dos planetas, que deram suporte à teoria heliocêntrica de Copérnico.

sítio da Viking Lander 1 em Chryse Planitia.
Em 1655, Christiaan Huygens faz experimentações com novos óculos e nesse mesmo ano constrói um bom telescópio com uma ampliação de 50x. Em 1659, quando Marte se encontrava em oposição, Huygens decide ver Marte com o seu telescópio e distingue manchas no disco do planeta e no seu esboço faz uma marca em forma de V, o que é hoje identificado como Syrtis Major. Huygens notou que a marca se movia, e assim calculou a rotação do planeta, anotando no seu diário: «A rotação de Marte, como a da Terra, parece ter um período de 24 horas.»
O ano de 1877 foi um ano-chave para os estudos do planeta, já que Marte se encontrava numa oposição muito mais próxima da Terra. E assim, o astrónomo norte-americano Asaph Hall descobre os satélites naturais de Marte: Fobos e Deimos; e o italiano Giovanni Schiaparelli dedicou-se a cartografar cuidadosamente o planeta; com efeito, ainda hoje se usa a nomenclatura criada por ele para os nomes das regiões marcianas: Syrtis Major, Noachis, Solis Lacus, entre outros nomes. Já a nomenclatura das observações de Marte na Madeira em Agosto e Setembro de 1877 por Nathaniel Green não prevaleceram. Essa nomenclatura tinha nomes mais antigos e honrava personalidades da astronomia.
Schiaparelli também acreditou que observava umas linhas finas em Marte, a que baptizou de canali (canais). Em inglês a palavra foi traduzida como canals em vez de channels, o que implicava algo de artificial, o que despertou a mente do aristocrata norte-americano Percival Lowell que se dedicou a especular sobre vida inteligente em Marte. Lowell estava tão entusiasmado que montou o seu próprio observatório. As suas observações convenceram-no que Marte era um planeta que estava a secar, e que existia uma antiga civilização marciana que construiu esses canais para drenar as calotas polares e enviar água para as cidades sedentas.
Essa ideia de uma civilização marciana passou para a imaginação popular. H.G. Wells escreve A Guerra dos Mundos em 1898 em que a Terra seria invadida por marcianos que usavam armas poderosas. Em 1938, Orson Welles fez uma adaptação do conto para a rádio o que causou o pânico generalizado e que levou a que algumas pessoas fugissem e outras afirmarem que sentiam o cheiro do gás venenoso lançado pelos marcianos ou que viam luzes ao longe, da luta dos marcianos para se apoderarem da Terra.
Mais tarde, provou-se que a grande maioria dos canais eram apenas uma ilusão de óptica. Na década de 1950, já quase ninguém acreditava em vida inteligente em Marte, mas muitos estavam convencidos da existência de musgos e líquenes primitivos.
Em plena Guerra Fria, em que as potências da época se envolveram numa corrida espacial, os soviéticos são os primeiros a tentar enviar sondas a Marte para descobrir o que se passava no planeta, mas nenhuma delas teve sucesso. Os norte-americanos foram logo de seguida e o sucesso chegou com a segunda tentativa através da sonda Mariner 4 que, em 1965, orbita Marte e consegue tirar a primeira fotografia próxima do planeta, mas de muito fraca qualidade. Os soviéticos só conseguiram fazer pousar uma sonda em Marte em 1974.
A 20 de Julho de 1976, a sonda norte-americana Viking I pousa em Chryse Planitia, uma planície circular na região equatorial norte de Marte, perto de Tharsis, e tira a primeira fotografia da superfície. A sonda gémea, a Viking II pousa a 3 de Setembro do mesmo ano em Utopia Planitia. Estas duas sondas operaram durante anos, até que as suas baterias falharam. Com esta missão, as ideias de uma civilização marciana e de vida primitiva ao nível de musgos foram postas de lado, mas dúvidas quanto a existência de bactérias continuaram a persistir.
A sonda Mars Pathfinder chega a Marte a 4 de Julho de 1997 e pousa em Chryse Planitia, na região de Ares Vallis, libertando um pequeno veículo robô que explorou e investigou diferentes rochas, verificando a origem vulcânica de uma ou a erosão causada pelo vento ou pela água de outras. Entretanto, a sonda de pouso enviou mais de 16 500 imagens e fez 8,5 milhões de medições à pressão atmosférica, temperatura e velocidade do vento. A 11 de Setembro do mesmo ano, chega a sonda Mars Global Surveyor, e a sua missão consistiu em fotografar o planeta com uma resolução muito maior que as missões anteriores conseguiriam fazer.

Marte visto pelo robô Spirit.
A Agência Espacial Europeia (ESA) entra na corrida enviando a sonda orbital Mars Express ao planeta vermelho. Esta chega a Marte no final de 2003, e lança um robô para explorar a superfície, mas o dispositivo não deu sinais de funcionamento após a chegada ao planeta vermelho. Já a sonda orbital tem sido marcada pelo sucesso, especialmente no que toca às descobertas envolvendo a água. De destacar a descoberta, em meados de 2005, do primeiro lago gelado encontrado no planeta.
Outras missões mais recentes bem sucedidas são as dos robôs de exploração "Spirit" (Espírito) e seu irmão gémeo "Opportunity" (Oportunidade) que exploram Marte desde Janeiro de 2004.
O robô Spirit pousou na grande e intrigante cratera Gusev. O robô Opportunity pousou em Meridiani Planum, no pólo norte. Apesar de Meridiani Planum ser uma planície, sem campos de rochas, o robô Opportunity rolou para a pequena cratera Eagle com apenas 20 metros de diâmetro. A parede da cratera tinha uma formação rochosa intrigante com rochas colocadas em camadas, que podem ter várias origens desde depósitos de cinza vulcânica a sedimentos causados pelo vento ou água. Depois de pesquisas feitas pelo robô a sedimentos, a NASA chega à conclusão que a Opportunity pousou numa antiga costa de um antigo mar salgado em Marte.
Todas estas missões foram feitas por máquinas e não pelo homem. Várias pessoas já partiram em defesa das missões tripuladas a Marte como o próximo passo lógico. Por causa da distância entre Marte e a Terra, a missão traria mais riscos e seria mais cara que as viagens à Lua, apesar de muitos acreditarem serem bem mais proveitosas que o envio de robôs. Seriam necessários mantimentos e combustível para uma viagem de ida e volta de 2 a 3 anos. Uma proposta chamada «Mars Direct» é tida como o plano mais prático e menos dispendioso para uma missão a Marte com seres humanos.

A concepção de um artista da terraformação de Marte.
A Agência Espacial Europeia tem como objectivo o envio de uma missão humana a Marte no ano 2030, como parte do seu Programa Aurora. Já os norte-americanos pretendem voltar à Lua em 2015, abrindo caminho para missões a Marte no futuro.
Nos últimos séculos, alguns cientistas acreditavam e acreditam que Marte é um forte candidato para a terraformação e colonização humana. A criação de uma colónia em Marte faria reduzir os custos da viagem e dificuldades técnicas da exploração humanas no planeta. Para terraformar Marte ter-se-ia que construir a atmosfera e aquecê-la. Uma atmosfera mais grossa de dióxido de carbono e outros gases de efeito-estufa iria aprisionar a radiação solar e ambos os processos construir-se-iam um ao outro. As fábricas que na Terra produzem gases nocivos ao planeta, em Marte teriam um efeito de terraformação, caso fossem construídas grandes fábricas. Além disso seriam necessárias plantas e outros organismos geneticamente alterados de forma a diversificar os gases da atmosfera.